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Abstract: 

The installation of wayside Energy Storage Systems (ESSs) in DC-electrified railway systems is 

one of the main measures to improve their energy efficiency. They store the excess of 

regenerated energy produced by the trains during the braking phases and give it back to the 

system when necessary. Nevertheless, the big cost of the associated installation can make 

railway operators hesitate about the convenience of the investment. Additionally, the decisions 

about the configuration of the installation (locations and sizes for the ESSs) are usually based on 

the previous experience of the railway operators or, at best, in assessments made with 

simulation tools with low accuracy. 

This paper proposes a model to optimize the profitability of the investment. Nature-inspired 

optimization algorithms are applied in combination with a very realistic railway simulator. The 

flexibility of the nature-inspired optimization algorithms, together with their ability to 

successfully deal with the computationally-intensive and highly non-linear and non-convex 

problem posed by the realistic railway simulator, makes them the perfect choice. 

Three different nature-inspired optimization algorithms have been selected and compared: the 

Genetic Algorithm (GA) as the main exponent of the evolutionary algorithms, the Particle 

Swarm Optimization algorithm (PSO) as the main exponent of the swarm algorithms and the 

Fireworks Algorithm (FA) as another variant of the swarm algorithms. The algorithms have 

shown an excellent behavior, providing solutions that combine the increase of energy efficiency 

with a very good profitability of the installation required to obtain that increase. 

Keywords: Nature-inspired optimization algorithms. Optimization of Energy Storage Systems. 

Railway power systems. Railway simulation. Energy efficiency. 
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1. Introduction 

In the current context of looking for measures to mitigate climate change, improving the energy 

efficiency is crucial for DC-electrified railway systems. One of the possible strategies is to 

increase the utilization of the regenerated energy produced by trains during the braking phases 

[1]-[4]. In DC railway lines without infrastructure improvements, only trains that are motoring 

at the same instants when the regenerated energy is being produced can consume the 

regenerated energy. If this coordination between motoring and braking phases does not take 

place, the excess of regenerated energy must be dissipated in the rheostats (on-board resistors), 

which yields a considerable loss of energy efficiency. For this reason, it can be necessary to 

increase the receptivity of the system (its capability to accept regenerated energy) by installing 

infrastructure improvements, the main ones being: 

• Reversible Substations (RSSs): they allow bidirectional power flows (from the utility grid 

to the catenary and vice versa) so that the excess of regenerated energy may be used in the 

operator’s network or eventually sold back to the energy provider if the legislation allows it 

([5]-[9]). 

• Energy Storage Systems (ESSs): they store the excess of regenerated energy and give it 

back to the catenary when needed ([10]-[14]). 

In recent years and nowadays, railway operators have shown a great interest in installing RSSs 

or ESSs to increase the energy saving in their lines. As stated in [15], these installations suppose 

a great investment that must be carefully assessed, usually with the help of simulation tools. 

However, the methodology to determine the optimal design of these installations is not 

sufficiently developed in scientific literature; decisions are usually made by means of unrealistic 

railway simulators or even based on the experience of railway operators.  

Table 1 shows a summary of the state of the art on the application of methodologies for 

designing the improvements of the electrical infrastructure through the installation of RSSs and 

ESSs. All these studies use simulation tools and apply analysis or optimization techniques to 

provide a reasonable solution. 

Regarding the studies in the literature that focus on the improvement of the infrastructure by the 

installation of RSSs, few of them deal with the problem of the optimal location and size. [16]-

[20] use nature-inspired optimization algorithms. In particular [16]-[18] use the Genetic 

Algorithms (GA), while [19] uses the Immune Algorithm (IA) and [20] uses the Particle Swarm 

Optimization algorithm (PSO). 

There are also a few works that study the optimal location and sizing for the ESSs. [21]-[23] use 

nature-inspired optimization algorithms. In particular, [22], [23] propose the Genetic Algorithm 
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(GA), while [21] proposes the Particle Swarm Optimization algorithm (PSO). There are also 

some authors who apply mathematical optimization models, such as the nonlinear optimization 

based on Lagrange multipliers (LGM) proposed by [24], [25], or the mixed integer linear 

programming (MILP) proposed by [26]. 

The decisions about the optimum infrastructure improvement that can be achieved with the 

installation of RSSs or ESSs highly depend on the accuracy of the railway simulator used 

together with the analysis or optimization techniques applied. Among the different modules of a 

railway simulator, the traffic model, although having a big impact on the results, has not been 

studied in detail in the literature. According to [15], an oversimplified traffic model can lead to 

considerable errors when computing the potential energy savings and, therefore, to wrong 

decisions about the infrastructure improvement to undertake.  

Some of the most important traffic variables and features that must be taken into account for an 

accurate traffic model are provided in [15]: the headway (time interval between trains), the time 

shift (gap between the departure instant of trains in each direction from the terminal stations), 

the speed profiles of the trains and the traffic regulation system (which determines the most 

appropriate speed profile to be used by each train in each interstation). Besides, the traffic 

conditions also have a great impact on these traffic variables and features, as well as on the 

potential energy savings. According to [27], two main different traffic conditions must be 

distinguished: traffic with small perturbations and traffic with large perturbations. The 

perturbation is the deviation of train departures with respect to the commercial timetable and 

take place due to multiple causes: 

• When the traffic has small perturbations, deviations are mainly due to small delays in the 

departure from the stations. 

• When the traffic has large perturbations, deviations result in big delays, mainly due to the 

accumulation of trains in a certain track stretch. 

Table 1 also shows the traffic variables and features contained in the studies previously 

presented. As can be seen, the vast majority of studies use simulations with very simplified 

traffic models. Only few of them use accurate traffic models, [6], [15], [27] being the most 

remarkable ones. [6] is the first example in the literature that observes most of the main traffic 

variables (the “synchronization delay” being a variable that includes the variability associated 

with the dwell time and the time shift). [15] is the first example with a complete model for 

traffic with small perturbations and [27] is the first example with a complete traffic model that 

observes both traffic conditions: small and large perturbations. Nevertheless, the focus of [15], 

[27] is only on analyzing the impact that the traffic model has on the estimation of the potential 
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energy savings obtained with the installation of RSSs. None of them tries to find the optimal 

configuration for the infrastructure improvements.  

Table 1: Research works where the installation of RSSs or ESSs has been studied  

RSSs 

/ 

ESSs 

Analysis 

/ 

Optimization 

Opt. 

Method 

Traffic model 

Reference 
Variable 
headway 

Variable 
time-shift 

Variable 
dwell time 

Different 

speed 

profiles 

Traffic 

regulation 

system 

R
S

S
s 

Optimization GA Yes No No No No [16] 

Optimization GA No No No No No [17] 

Optimization GA Yes “stochastic operation”  

(without details) 
No No [18] 

Optimization IA Yes No No [19] 

Analysis - No No No No No [28] 

Analysis - Yes No No Yes Yes [29] 

Optimization PSO Yes Yes Yes No No [20] 

Analysis - Yes “sychronization delay” Yes No [6] 

Analysis - Yes Yes Yes Yes Yes [15] 

Analysis - Yes No Yes Yes Yes [27] 

E
S

S
s 

Optimization GA Yes No No No No [23] 

Optimization GA No No No No No [30] 

Optimization LGM No No No No No [24] 

Optimization LGM No No No No No [25] 

Optimization MILP No No No No No [26] 

Optimization PSO No No No No No [21] 

Analysis - Yes No No No No [10] 

Analysis - Yes No Yes No No [13] 

Therefore, this paper aims to fill this gap: determining the optimal configuration (number, 

location and size) to improve the infrastructure of a railway line with the help of a railway 

simulator with an accurate and realistic traffic model. The search for the optimum configuration 

will be made with several nature-inspired optimization algorithms as they have been proved to 

be very flexible and successful in dealing with computationally-intensive and highly non-linear 

and non-convex problems [31]-[33], such as the one presented by the realistic railway simulator 

that is going to be used. For this study, the infrastructure improvement will consist of the 

installation of ESSs. Nevertheless, the algorithms and methodology proposed in the paper can 

be also applied to find the optimal configuration for RSSs. 

Regarding the structure of the paper, Section 2 describes the methodology. Section 3 formulates 

the optimization problem and explains the algorithms designed to solve it. Section 4 presents the 

case study. Section 5 gives the details about the way the algorithms have been applied. Section 

6 contains the results. Finally, Section 7 has the main conclusions that can be drawn from this 

paper. 
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2. Methodology 

2.1. Railway simulator 

Although the thorough description of the railway simulator used for this research is out of  

scope of this paper, it must be noted that it is very detailed, both from the electrical and traffic 

modelling points of view. Figure 1 provides a graphical explanation of the railway simulator. A 

simplified description of the main steps of the simulation process is given below (it is based on 

the explanations provided by [15], [27]: 

1. Step 1: Creating the traffic scenarios that contains the power consumption and regeneration 

profiles of each train at each time instant and location of the railway line. This process 

requires: 

a. A train movement simulator that generates the speed, power consumption and 

regeneration profiles of a train. It is divided into three main modules [34], [35]: 

• The train module takes into account train’s characteristics: length, mass, running 

resistance and rotary inertia. The motor features are also observed with the 

maximum traction and braking effort curves as a function of the train speed and the 

efficiency as a function of the effort ratio and train speed. No effects on train 

dynamics due to pantograph voltage variations are taken into account, and hence 

the results of the mechanical simulation of the system are not affected by electrical 

results. This assumption is made taking into account common features of modern 

traction equipment [36] and that metro lines are not subject to interoperability 

regulations. 

• The line module includes the physical information of the track: grades, grade 

transition curves (and the effect along the train), bends, bend transition curves and 

tunnels. Additionally, it includes the operational characteristics of the track such as 

permanent and temporary speed limits.  

• The Automatic Train Operation (ATO) module represents the control logic of 

the train automatic driving. Based on train’s speed and position and considering the 

speed limits and the programmed driving commands, the ATO computes the value 

of traction/braking command to be sent to the motor. 

b. The traffic model, which observes the two main traffic conditions: traffic with small 

and large perturbations. Several headway values are used in order to take into account 

the different situations that take place during the day (peak hours, off peak hours, etc.). 

The values and characteristics of the rest of the traffic variables and features 

previously described are determined by the realistic traffic module and will depend 

on the traffic conditions: 
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• Model for traffic with small perturbations: noise associated with different types 

of uncertainties is added to the time shift and to the dwell time (modelled according 

to a log-normal distribution [37]). There is also a traffic regulation system in 

charge of selecting the most appropriate speed profile by finding the best balance 

between punctuality and energy consumption reduction: if the train departs with 

some delay from a station (with respect to the commercial timetable), a faster and 

more energy-consuming speed profile than the one used in the commercial 

timetable is selected, while if the train from a station departs in advance (with 

respect to the commercial timetable), a slower and less energy consuming speed 

profile than the one used in the commercial timetable is selected. The detailed 

explanation of the model for traffic with small perturbations is given in [15]. 

• Model for traffic with large perturbations: as trains are accumulated in certain 

track stretches due to large perturbations, their speed profile is affected by the 

signalling system, in order to separate it from the previous train (the perturbations 

on the speed profile can go from activating speed limits to making intermediate 

stops). Dwell times are also affected as the signalling system might not allow the 

departure of a train from a station if there is another train stopped in the vicinity. 

The detailed explanation of the model for traffic with large perturbations is 

given in [27].  

Contrary to what usually happens in the literature, the output from the traffic model is not a 

single traffic scenario per headway, but a large number of different traffic scenarios, where 

all the variability associated with the different traffic variables and features previously 

explained is observed. This variability due to the traffic is proven to have a high impact on 

the assessment of the infrastructure improvements [15], [27]. 

2. Step 2: Integrating the train traffic timetable within the electrical infrastructure to generate 

the equivalent electrical scenarios that must be solved (each time sample has an associated 

electrical scenario/circuit, called “snapshot”). The electrical scenario generator is in 

charge of this task and its details can be found in [38]. 

3. Step 3: Solving the load flow of all the electrical scenarios in the load flow module. Each 

snapshot is non-linear and must be solved with the application of iterative techniques. In 

particular, the iterative technique used by the simulator is the unified-mixed AC-DC 

Newton-Raphson method (for more details see [38]), which calculates: 

• Voltages and angles in AC nodes (e.g: the AC nodes of the traction substations). 

• Voltages in DC nodes (e.g: the DC nodes of the tractions substations, train 

pantographs, catenary nodes, etc.). 

After solving the load flow, all the electrical variables are computed, among them: power 
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consumption in substations, rheostat losses, grid losses, etc. 

 

 

Figure 1: Railway simulator [27] 

 

4. Step 4: Selecting the electrical variables of interest and performing the required 

computations, that can vary depending on the objective of the simulation. In the case of this 

paper, the variable used as input for the optimization algorithms looking for the optimal 
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location and size of the ESSs is the energy consumption in the substations. 

 

For the sake of clarity, the railway simulator can be divided in two main parts:  

• Operation module: is in charge of step 1 and includes the train movement simulator 

and the traffic model. 

• Electrical network module: is in charge of steps 2, 3 and 4 and includes the electrical 

scenario generator and the load flow module 

2.2. Communication between the optimization algorithms and the railway simulator 

With the information provided by the electrical simulation, the next step is to decide which, 

among all the possible configurations for the infrastructure improvements, produces the best 

result (in terms of profitability and energy saving, as will be explained in Section 3). The 

attributes of each configuration are the following: 

• Number of ESSs to install. 

• Location of the ESSs to install. 

• Power (kW) of the ESSs to install. 

It must be noted that the energy storage capacity of the ESSs will be set to 5 kWh. Although it is 

clear that the higher the capacity, the higher the energy saving, this value allows -for the case-

study railway line concerning this paper- not losing significant amounts of regenerated energy 

due to lack of storage capacity. It has not been included in the formulation of the optimization 

problem as a variable of decision because its impact is very low compared to the power (the cost 

associated with the power of the ESS is more than 10 times higher than the cost associated with 

the capacity). In future works this variable will be also considered as a variable of decision. 

The communication process between the algorithm and the simulator is made up of the 

following steps: 

1. The algorithm gives the configuration (locations and power) of the ESSs installations to 

be tested as the input data for the simulator. 

2. The electrical network module simulates each ESSs configuration provided by the 

algorithm in the different traffic scenarios generated by the operation module. After 

performing the electrical simulations, the energy saving associated with this 

configuration is given as the output data to the optimization algorithm. 

3. The Net Present Value of each configurations is computed from its associated energy 

saving and installation cost (see Section 3.1 to see the way NPV is computed) and the 

optimization algorithm will use it as the fitness value of the optimization problem.  
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3. Optimization 

The optimization algorithms will try to find the optimum ESSs configuration (regarding 

number, location and power size). This paper will use nature-inspired optimization algorithms 

instead of using formal mathematical models. The main reasons for this choice are explained in 

[20]: 

• Formal optimization models must solve a highly non-linear and non-convex load flow 

problem, while deciding the optimal configuration of the electrical infrastructure. This 

causes very complex and time-consuming optimization processes. 

• Formal optimization models use a large number of simplifications for the traffic model, 

which does not ensure that they are capable of dealing with complex metropolitan lines, 

where there are different time intervals between trains and many possible traffic 

scenarios. 

The three optimization algorithms selected are the Genetic Algorithm (GA) [39], the Particle 

Swarm Optimization Algorithm (PSO) [40] and the Fireworks Algorithm (FA) [41]. The GA 

and the PSO are, respectively, the main exponents of the evolutionary and swarm algorithms 

and have been used in multiple applications [42], [43]. The FA is an interesting and novel 

proposal within the swarm algorithms with promising results [44]. The optimization problem 

will be defined in Section 3.1, while the particular implementation of each algorithm will be 

explained in Section 3.2. 

3.1. Optimization problem 

In order to fit with this optimization problem, the standard GA, PSO and FA have been 

reformulated as knapsack problems with some changes. The knapsack problem is a well-known 

problem found in the optimization literature [45] and consists in picking and choosing a set of 

items from a given larger set to put in the knapsack so as to maximize the total value, under the 

weight constraints of the knapsack. The knapsack optimization problem is generally coded as a 

bit string containing zeros and ones – a “one” representing the fact that a certain item is selected 

and a “zero” representing the fact that a certain item is not selected. For the particular case of 

this optimization problem, each item represents one of the potential locations where an ESS can 

be installed and, instead of having a bit string containing zeros and ones, each item has a value 

from a set of discrete values that represent the possible amounts of power that can be installed. 

The weight constraints are related to the maximum admissible budget that cannot be exceeded. 

Therefore, each chromosome (in the case of the GA), particle (in the case of the PSO) or spark 

(in the case of FA) contains the characteristics of one ESSs’ configuration according to the 

structure given by (1): 
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𝑝i = [𝑝𝑜𝑤1 , 𝑝𝑜𝑤2,⋯𝑝𝑜𝑤𝑘⋯ 𝑝𝑜𝑤𝑁] (1) 

Where: 

✓ 𝑝𝑜𝑤𝑘 is the item associated with position 𝑘 and represents the power (kW) for the ESS 

installed in that position. The values for this variable are discrete, going from 0 kW (no 

ESS installed in position 𝑘) to 𝑚𝑎𝑥𝑝𝑜𝑤   kW (maximum power that can be installed) in 

steps of 𝑠𝑡𝑒𝑝𝑝𝑜𝑤 kW. Therefore, each item must take one value out of the available set 

of 
𝑚𝑎𝑥𝑝𝑜𝑤

𝑠𝑡𝑒𝑝𝑝𝑜𝑤
 discrete values (being 𝑚𝑎𝑥𝑝𝑜𝑤 a multiple of 𝑠𝑡𝑒𝑝𝑝𝑜𝑤). 

✓ 𝑁 is the number of potential locations for installing the ESS. This means that each 

chromosome/particle/spark will have 𝑁 items. 

The optimal solution is the one that yields the highest Net Present Value (NPV) of the 

installation. Therefore, the fitness function for a given chromosome/particle/spark 𝑖 (𝑝i) is the 

NPV of its associated ESSs configuration. The equation of the fitness function is in (2). 

𝑁𝑃𝑉(𝑝i) =  ∑
(𝐸𝑅𝑎𝑤

𝐴𝑁𝑁𝑈𝐴𝐿 − 𝐸𝐸𝑆𝑆𝑠
𝐴𝑁𝑁𝑈𝐴𝐿(𝑝i)) ∙ 𝑒𝑐𝑜𝑠𝑡  

(1 + 𝑤𝑎𝑐𝑐)𝑡

𝑇

𝑡=1

− 𝐶0(𝑝i) 

 

𝒔. 𝒕         𝐶0(𝑝i) ≤ 𝑏𝑢𝑑𝑔𝑒𝑡 
 

(2) 

Where: 

✓ 𝐸𝑅𝑎𝑤
𝐴𝑁𝑁𝑈𝐴𝐿 is the annual energy consumption without any infrastructure improvement. This 

value is obtained from the railway simulator. 

✓ 𝐸𝐸𝑆𝑆𝑠
𝐴𝑁𝑁𝑈𝐴𝐿(𝑝i) is the annual energy consumption obtained with the ESSs configuration 

determined by the spark 𝑝i. This value is obtained from the railway simulator. 

✓ 𝑒𝑐𝑜𝑠𝑡 is the energy price. This parameter allows transforming the energy saving, which is 

computed by comparing the total energy consumption with and without infrastructure 

improvement (𝐸𝑅𝑎𝑤
𝐴𝑁𝑁𝑈𝐴𝐿 − 𝐸𝐸𝑆𝑆𝑠

𝐴𝑁𝑁𝑈𝐴𝐿(𝑝i)) into economic cash flows. 

✓ 𝐶0(𝑝i) is the installation cost of the ESS configuration determined by 

chromosome/particle/spark 𝑖 (𝑝i).  

✓ 𝑤𝑎𝑐𝑐 is the Weighted Average Cost of Capital.  

✓ 𝑇 is the period to evaluate the investment. 

✓ 𝑏𝑢𝑑𝑔𝑒𝑡  is the maximum amount of money available to undertake the infrastructure 

improvement.  

The reason why the NPV has been selected as fitness function is that it is capable of finding a 

balance between what is important from the environmental point of view- the energy saving- 

and what is important for the railway operator –justifying the investment in the infrastructure 

improvement and obtaining economic benefits from it. The investment will be economically 



 
 

12 
 

profitable if the NPV is positive in 𝑇. Therefore, the optimization algorithms will try to 

determine the configuration with the highest NPV (the higher the NPV, the better the balance 

between the energy savings and the cost of the installation). 

3.2. Implementation of the optimization algorithms 

Sections 3.2.1, 3.2.2 and 3.2.3 provide the explanation of each algorithm. For a better 

understanding, Figure 2 shows the flow chart of the three of them.  

 

Figure 2: Flowchart of the GA, PSO and FA 

3.2.1.  Genetic Algorithm (GA) 

The Genetic Algorithm (GA) is a well-known optimization metaphor based on the natural 

selection process. It begins with a population of random solutions called chromosomes, and 

evolves them through several cycles of selection, crossover and mutation operations. The better 

fit selected chromosomes exchange the promising genetic information, which is further mutated 

to give rise to ever evolving and best fit or optimal solutions.  

Each chromosome has 𝑁 items that can take one of the 
𝑚𝑎𝑥𝑝𝑜𝑤

𝑠𝑡𝑒𝑝𝑝𝑜𝑤
 possible values, according to the 

knapsack formulation previously explained. In the case of the GA, each item will be called a 

gene. The steps of the GA are based on [45], listed below and depicted in Figure 2. 

GA 1. Random generation of population of chromosomes: all the chromosomes are 

randomly generated and must not violate the budget constraints. 

Random generation 

of population of 

chromosomes

Fitness evaluation of 

the initial population 

of chromosomes

Selection

Crossover

Mutation

Mutation as 

repair

             𝑚𝑎𝑥

Fitness evaluation of 

the new population of 

chromosomes

Are there 

infeasibilities?yes

yes

no

end

Random generation 

of population of 

particles

Fitness evaluation of 

the initial population 

of particles

Velocity update

Position update

Mutation as 

repair

             𝑚𝑎𝑥

Fitness evaluation of 

the new population of 

particles

Are there 

infeasibilities?yes

yes

no

end

Random generation 

of population of 

fireworks

Fitness evaluation of 

the initial population 

of fireworks

Regular sparks 

explosion

(with correction of 

infeasibilities)

Gaussian sparks explosion

(with correction of 

infeasibilities)

             𝑚𝑎𝑥

Fitness evaluation of the new sparks

yes

no

end

Selection of the 

fireworks for next 

generation

GA PSO FA

no no
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GA 2. Fitness evaluation of the initial population of chromosomes: the infrastructure 

configurations of the initial chromosomes are simulated in the railway simulator, which 

provides the energy saving associated with them. With this information and the cost of 

the installation associated with each chromosome, the NPV is computed by applying 

(2). 

GA 3. Selection: the tournament selection procedure has been selected. A pair of 

chromosomes is randomly selected from the children population of the previous 

iteration or from the initial population in case of the first iteration. The fitness of both 

chromosomes are compared and the chromosome with the highest fitness is selected as 

a “parent chromosome” for the next generation. This selection procedure is repeated 

until the number of selected parents equals the population size and the same 

chromosome can be selected more than once (every pair is randomly selected from the 

whole children population of the previous iteration/initial population). After having the 

“parents” for the new population, one of them is randomly selected and replaced by the 

chromosome with the best fitness of the children population of the previous iteration 

/initial population. The population resulting from the selection will be called parent 

population. 

GA 4. Crossover: two types of crossover mechanisms have been selected (each of them have 

been applied in a different optimization scenario, as will be seen in Section 5.2). 

a. One-point crossover: parents are randomly selected in pairs as well as a single 

crossover point for each pair. The part of the chromosome after the crossover 

point is exchanged between the parents. 

b. Uniform crossover: parents are randomly selected in pairs and each gene is 

swapped between each pair with a probability 𝑝𝑠𝑤𝑎𝑝. 

The population resulting from the crossover will be called children population. 

GA 5. Mutation: every chromosome of the children population can be modified in one of its 

genes with a probability 𝑚𝑢𝑡1, in two of them with a probability 𝑚𝑢𝑡2 or in none of 

them with a probability 𝑚𝑢𝑡0. The relationship among probabilities 𝑚𝑢𝑡2,𝑚𝑢𝑡1,𝑚𝑢𝑡0 

is shown in (3). 

 

𝑚𝑢𝑡2 < 𝑚𝑢𝑡1 ≪ 𝑚𝑢𝑡0 
𝑚𝑢𝑡1 +𝑚𝑢𝑡2 +𝑚𝑢𝑡0 = 1 

(3) 

  

GA 6. Fitness evaluation of the new population of chromosomes: the chromosomes of the 

children population are evaluated in the same way as the described in step 2 (GA 2). 

Once the new fitness values are obtained, the algorithm proceeds to the next iteration,  
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which starts in step GA 3. This process is repeated for a number of iterations given by 

𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥. 

The children population is obtained from the parent population after applying the crossover and 

mutation mechanisms. It may happen that some chromosomes of the children population are not 

feasible as their installation cost is higher than the maximum budget. In order to avoid 

infeasibilities, the mutation as repair mechanism is applied to those chromosomes. This 

mechanism consists in randomly selecting genes with non-zero values and reducing its size in 

𝑠𝑡𝑒𝑝𝑝𝑜𝑤 (the minimum admissible change in size) until the installation cost of the chromosome 

becomes feasible. 

3.2.2. Implementation of the Particle Swarm Algorithm (PSO) 

The Particle Swarm Optimization (PSO) is a metaphor in the swarm intelligence paradigm. It 

has become a popular meta-heuristic algorithm in the optimization domain and has been 

successfully applied to optimization problems ranging from business, engineering, healthcare, 

etc. Based on the food-gathering behavior of swarms of bees, birds and schools of fish, PSO 

optimally balances exploration and exploitation. Simplicity in implementation, negligible 

computational overhead and rapid convergence have made it one of the outstanding swarm 

intelligence paradigms.  

Each particle maintains a history of its flying over the search space. In every cycle of flying, the 

swarm also records two important pieces of information – pbest (the best position found by a 

particle in the course of flying) and gbest (the best position found by the swarm as a whole). 

These two values act as beacons to guide the flying of the rest of the particles towards the global 

optimum during the search.  

Unlike the GA, which is designed for discrete search spaces, the PSO was originally designed to 

deal with continuous search spaces. Nevertheless, the formulation of the PSO as a knapsack 

problem allows it to successfully deal with discrete search spaces. According to this 

reformulation, each particle of the population has 𝑁 items that can take 
𝑚𝑎𝑥𝑝𝑜𝑤

𝑠𝑡𝑒𝑝𝑝𝑜𝑤
 possible values. 

In the case of the PSO, the position of the particle in a given iteration will be defined by the 

value taken by each of its 𝑁 items. The steps of the PSO, according to [45], are listed below and 

depicted in Figure 2. 

 

PSO 1. Random generation of population of particles: same as the GA. 

PSO 2. Fitness evaluation of the initial population of particles: same as the GA. 

PSO 3. Velocity update: each particle has a position change known as velocity. In a given 

iteration, 𝑖𝑡𝑒𝑟, the velocity of each particle is updated according to (4): 
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𝑣(𝑖𝑡𝑒𝑟) = 𝑤 ∙ 𝑣(𝑖𝑡𝑒𝑟 − 1) + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑏𝑒𝑠𝑡 − 𝑥(𝑖𝑡𝑒𝑟 − 1)) + 𝑐2 ∙ 𝑟2 ∙ (𝑔𝑏𝑒𝑠𝑡 − 𝑥(𝑖𝑡𝑒𝑟 − 1)) (4) 

 

Where: 

✓  𝑣 is a vector of 𝑁 items that determines the velocity of the particle. 

✓ 𝑥 is a vector of 𝑁 items that determines the position of the particle. 

✓ 𝑤 is the inertia weight. 

✓ 𝑐1, 𝑐2 are called social factors (being 𝑐1the personal attractor and 𝑐2the global 

attractor). 

✓ 𝑟1, 𝑟2 are random numbers between 0 and 1. 

PSO 4. Position update: in a given iteration 𝑖𝑡𝑒𝑟, the position of each particle is updated 

according to (5). The values of each of the items of the particle obtained from updating 

the position are rounded to the nearest discrete value from the set of possible values.  

𝑥(𝑖𝑡𝑒𝑟) = 𝑣(𝑖𝑡𝑒𝑟) + 𝑥(𝑖𝑡𝑒𝑟 − 1) (5) 

PSO 5. Fitness evaluation of the new population of particles: the new particles are evaluated 

in the same way as the described in step 2 (PSO 2). Once the new fitness values are 

obtained, the algorithm proceeds to the next iteration, which starts in step PSO 3. This 

process is repeated for a number of iterations given by 𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥. 

As happened with the GA, some particles with the updated position may be not feasible. In 

order to avoid infeasibilities, the mutation as repair mechanism explained for the GA is also 

applied to the PSO. 

3.2.3. Implementation of the Fireworks Algorithm (FA) 

The Fireworks Algorithm (FA) is a recent Swarm Intelligence optimization algorithm, which 

derives its inspiration from the fireworks exploding in the night sky. The algorithm generates 

random initial positions of N fireworks. The fireworks explode generating sparks, depending on 

their respective amplitudes. Fireworks with higher fitness values have a smaller explosion 

amplitude and a larger number of explosion sparks, while fireworks with lower fitness values 

have a larger explosion amplitude and a smaller number of explosion sparks. In addition, 

random sparks are also generated based on a Gaussian mutation process. A new population of 𝑛 

fireworks is selected at the end of each iteration. This may include the original fireworks, as 

well as the regular and Gaussian sparks. The elitist strategy is maintained by always inserting 

the current best location in the new population. 

Like the PSO, the FA was originally designed to deal with continuous search spaces. 

Nevertheless, the formulation of the FA as a knapsack problem allows it to successfully deal 

with discrete search spaces. According to this reformulation, each spark of the population has 𝑁 
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items that can take 
𝑚𝑎𝑥𝑝𝑜𝑤

𝑠𝑡𝑒𝑝𝑝𝑜𝑤
  possible values. In the case of the FA, the location of the spark in a 

given iteration is defined by the value taken by each of its 𝑁 items, which will also be called 

dimensions of the spark (consequently, each spark will have 𝑁 dimensions). Apart from the 

reformulation as a knapsack problem, some parts of the standard FA defined by [41] have been 

discretized. The steps of the discretized FA are listed below and depicted in Figure 2. 

FA 1. Random generation of population of fireworks: same as the GA. 

FA 2. Fitness evaluation of the initial population of fireworks: same as the GA. 

FA 3. Regular sparks explosion: from each firework a variable number of regular sparks is 

set off. The explosion has the following steps: 

FA 3.1. Selecting the number of regular sparks per firework: each firework has a 

different amount of regular sparks to set off, which directly depends on the fitness of 

the firework: the higher the fitness of the firework, the higher the number of regular 

sparks to set off from that firework. The number of regular sparks per firework is 

determined by (6). 

𝑛𝑢𝑚𝑏𝑒𝑟_𝑠𝑝𝑎𝑟𝑘𝑠𝑓𝑤𝑖 = 𝑟𝑜𝑢𝑛𝑑 (𝑚 ∙
𝑓𝑖𝑡𝑓𝑤𝑖 − 𝑓𝑖𝑡𝑊𝑂𝑅𝑆𝑇 + 𝜀

∑ (𝑓𝑖𝑡𝑓𝑤𝑗 − 𝑓𝑖𝑡𝑊𝑂𝑅𝑆𝑇)
𝑛
𝑗=1 + 𝜀

) 
(6) 

Where: 

✓ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑠𝑝𝑎𝑟𝑘𝑠𝑓𝑤𝑖 is the number of regular sparks to be set off from 

firework 𝑖 (𝑓𝑤𝑖). 

✓ 𝑛 is the number of fireworks, which corresponds to the population size.  

✓  𝑚 is a parameter to control the total number of regular sparks generated by 

the 𝑛 fireworks. 

✓ 𝑓𝑖𝑡𝑓𝑤𝑖  is the fitness of firework 𝑖 (𝑓𝑤𝑖). 

✓ 𝑓𝑖𝑡𝑊𝑂𝑅𝑆𝑇 is the worst fitness of the 𝑛 fireworks. 

✓ 𝜀 is a very small constant used to avoid zero-division-error. 

FA 3.2. Selecting the amplitude of explosion per firework: the amplitude of 

explosion of each firework depends directly on the fitness of the firework: the 

higher the fitness of the firework, the smaller the amplitude. The smaller the 

amplitude, the higher the exploitation, while the higher the amplitude, the higher 

the exploration. The amplitude of explosion of a firework is determined by (7). 

𝐴𝑐𝑓𝑤𝑖  =
𝑓𝑖𝑡𝐵𝐸𝑆𝑇 − 𝑓𝑖𝑡𝑓𝑤𝑖 + 𝜀

∑ (𝑓𝑖𝑡𝐵𝐸𝑆𝑇 − 𝑓𝑖𝑡𝑓𝑤𝑗 )
𝑛
𝑗=1 + 𝜀

 
(7) 

 

Where: 

✓ 𝐴𝑐𝑓𝑤𝑖 is the amplitude of explosion of firework 𝑖 (𝑓𝑤𝑖). 
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✓ 𝑓𝑖𝑡𝐵𝐸𝑆𝑇 is the best fitness of the 𝑛 fireworks. 

The original formula for the amplitude of the explosion defined in (7) is applied to 

obtain a first continuous value, 𝐴𝑐𝑓𝑤𝑖  for firework 𝑖, which then will discretized into 

two possible values : 

• 𝑠𝑡𝑒𝑝𝑝𝑜𝑤  when 𝐴𝑐𝑓𝑤𝑖 is within the xth percentile of the smallest continuous 

radii (which is equivalent to be within the x% of fireworks with the best 

fitness). 

• 2 ∙ 𝑠𝑡𝑒𝑝𝑝𝑜𝑤 when 𝐴𝑐𝑓𝑤𝑖 is out of the xth percentile of the smallest continuous 

radii (which is equivalent to be within the (100-x)% of fireworks with the 

worst fitness). 

After this transformation from continuous to discrete, each firework 𝑖 will have 

an associated discrete amplitude of explosion 𝐴𝑑𝑓𝑤𝑖 . 

FA 3.3. Generating the regular sparks: each regular spark differs from the firework 

from which it is set off in z randomly selected dimensions, z being a random 

number that goes from 0 to the total number of dimensions of the spark. The 

algorithm to compute the change in dimension 𝑘 of regular spark 𝑗, exploded from 

firework 𝑖, is defined by (8). 

𝑠𝑝𝑗
𝑘 = 𝑓𝑤𝑖

𝑘 + 𝑟𝑎𝑛𝑑𝑠𝑎𝑚𝑝𝑙𝑒([−𝐴𝑑𝑓𝑤𝑖: 𝑠𝑡𝑒𝑝𝑝𝑜𝑤: +𝐴𝑑𝑓𝑤𝑖]) (8) 

Where: 

✓ 𝑓𝑤𝑖
𝑘 is the value for dimension 𝑘 of firework 𝑖. 

✓ 𝑠𝑝𝑗
𝑘  is the value for dimension 𝑘 of regular spark 𝑗. 

✓ 𝑟𝑎𝑛𝑑𝑠𝑎𝑚𝑝𝑙𝑒 is a logical operator that randomly selects one of the values 

of vector [−𝐴𝑑𝑓𝑤𝑖: 𝑠𝑡𝑒𝑝𝑝𝑜𝑤: +𝐴𝑑𝑓𝑤𝑖] according to a uniform distribution. 

 

If dimension 𝑘 of regular spark 𝑗 crosses the maximum or minimum limits in 

power, the maximum or minimum power, respectively, is set for dimension 𝑘 of 

regular spark 𝑗.  

If an increment in the power of dimension 𝑘 of regular spark 𝑗 makes the spark 

infeasible in terms of budget, that increment is reduced to a feasible increment in 

terms of budget (this mechanism emulates, somehow, the mutation as repair 

mechanism of the GA and the PSO and ensures that the new sparks comply with 

the budget). 

 

FA 4. Gaussian sparks explosion: according to [41], in order to keep the diversity of sparks, 

another type of explosion must also be applied to set off a very reduced amount of 

sparks. This type of explosion is called “Gaussian Explosion” and is only applied to 

𝑚𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 number of sparks. Each Gaussian spark is set off from a different firework 
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and differs from it in z randomly selected dimensions, z being a random number that 

goes from 0 to the total number of dimensions of the spark, 𝑁, (the same as in the 

regular explosion). The algorithm to compute the change in dimension 𝑘 of Gaussian 

spark 𝑔, exploded from firework 𝑖, is defined by (9). 

 

𝑤ℎ𝑖𝑙𝑒 𝑐𝑜𝑒𝑓𝑓 < 0  
     𝑐𝑜𝑒𝑓𝑓 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (1,1) 
𝑒𝑛𝑑 

𝑠𝑝𝑔𝑔
𝑘=𝑟𝑜𝑢𝑛𝑑(

𝑓𝑤𝑖
𝑘 ∙ 𝑐𝑜𝑒𝑓𝑓

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑝
⁄ ) ∙ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑝 

 

(9) 

Where: 

✓ 𝑐𝑜𝑒𝑓𝑓 is the coefficient of “Gaussian Explosion”. It must be noted that 𝑐𝑜𝑒𝑓𝑓 

must not be negative because the power of the ESS cannot be negative, just 0 

(which means no installation of an ESS in the location associated with 

dimension 𝑘). 

✓ 𝑠𝑝𝑔
𝑘  is the value for dimension 𝑘 of Gaussian spark 𝑔. 

If dimension 𝑘 of Gaussian spark 𝑔 crosses the maximum limit in power (in this case it 

is not possible to cross the minimum), the maximum power is set for dimension 𝑘 of 

Gaussian spark 𝑔. 

If an increment in the power of dimension 𝑘 of Gaussian spark 𝑔 makes the spark 

infeasible in terms of budget, that increment is reduced to a feasible increment in terms 

of budget (this mechanism emulates, somehow, the mutation as repair mechanism of the 

GA and the PSO and ensures that the new sparks comply with the budget). 

FA 5. Fitness evaluation of the new sparks: the new sparks are evaluated in the same way 

as the described in the step 2 (FA 2). 

FA 6. Selection of the locations of fireworks for the next generation: 𝑛 new fireworks to 

set off the sparks of the next generation must be selected from the fireworks and sparks 

of the current generation. Among all the sparks and fireworks of the current generation, 

the one with the best fitness is directly selected. The 𝑛 − 1 remaining fireworks are 

selected according to their distance to other locations in order to keep diversity among 

fireworks. For this optimization problem, distance measure is computed according to 

the Manhattan distance (sum of the absolute value of the differences in every 

dimension of the sparks/fireworks). The probability for firework/spark 𝑥 of current 

generation to become a firework in the next generation is defined by (10). 

𝑝(𝑥)  =
𝑅(𝑥)

∑ 𝑅(𝑓𝑤𝑖)
𝑛
𝑖=1 +∑ 𝑅(𝑠𝑝𝑗)

𝑚
𝑗=1 +∑ 𝑅(𝑠𝑝𝑔)

𝑚𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛
𝑔=1

 
(10) 
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Where 𝑅(… ) is the sum of the distances between the spark/firework selected and the 

rest of fireworks and sparks. In the case of firework/spark 𝑥, this value is computed 

according to (11). 

𝑅(𝑥)  = ∑∑|𝑥𝑘 − 𝑓𝑤𝛼
𝑘|

𝑁

𝑘=1

𝑛

𝛼=1

+∑∑|𝑥𝑘 − 𝑠𝑝𝛽
𝑘|

𝑁

𝑘=1

𝑚

𝛽=1

+ ∑ ∑|𝑥𝑘 − 𝑠𝑝𝛾
𝑘|

𝑁

𝑘=1

𝑚𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛

𝛾=1

 (11) 

 

Once the new fitness values are obtained, the algorithm proceeds to the next iteration, 

which starts in step FA 3. This process is repeated for a number of iterations given by 

𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥. 

4. Case study 

4.1. Topological, electrical and rolling stock characteristics 

The case study line is inspired by a real Spanish metro line but with changes to the topology in 

order to make it more complex from the point of view of the decisions to take for improving the 

infrastructure. Figure 3 represents, in a simplified way, the topology of the case study line.  

 

Figure 3: Case study line topology 

As can be seen, there is a common section (section A-B), and two branches (branches B-D and 

B-F). Besides, each branch has two different terminal stations: (C and D for branch B-D; E and 

F for branch B-F). Therefore, there are four different types of train service: 

• Type 1: the itinerary of the trains providing this type of service is A-B-C-D-C-B-A. 

• Type 2: the itinerary of the trains providing this type of service is A-B-C-B-A. 

• Type 3: the itinerary of the trains providing this type of service is A-B-E-F-E-B-A. 

• Type 4: the itinerary of the trains providing this type of service is A-B-E-B-A. 

The different types of service are repeated periodically in this order: Type 1- Type 4- Type 2- 

Type 3. 

1 2 3 4 5 6 7 8

9 10 11

Service type 1

Service type 2

Service type 3

Service type 4

Traction Substation 
and potential 

location for installing 
the ESS

Train station

A
B C

D

F
E
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Table 2 shows the main electrical and topological characteristics of this line, as well as the 

information regarding the rolling stock. 

Table 2: Case study topological, electrical and rolling stock characteristics 

Topological  and electrical and characteristics Rolling stock characteristics 

• Line length. 

o Common section A-B: 9.8 km 

o Branch B-D: 10 km 

o Branch B-F: 8.3 km 

• Maximum speed: 70 km/h. 

• Passenger stations. 

o Common section A-B: 12 per track 

o Branch B-D: 12 per track 

o Branch B-F: 9 per track 

• Traction SSs: 11  

o Common section A-B: 4 

o Branch B-D: 4 

o Branch B-F: 3 

• Rectifier type (all SSs): 6-pulse diode rectifiers (one-

quadrant) 

• Rectifier nominal power. 

o SSs 1-4 (common section): 6.6 MVA. 

o SSs 5-11 (branches): 4.8 MVA. 

• Nominal voltage of the line / No-load voltage:                               

1600 / 1650 V 

• Feeder lines: Conventional overhead conductor with a 

support feeder connected to the contact lines every 700 m 

(at these points, both track overhead conductor lines are 

paralleled).  

• Connectors on the feeding terminals of the traction 

power substation: closed. The whole line is a single 

electrical sector. 

• Return circuit: Both rails are used to carry the return 

current. 

• Total impedance of the active + return line: 26 mΩ/km. 

• Empty train mass: 192.96 tons (only one type of train 

composition used). 

• Train maximum load: 76.58 tons. 

• Train load in the study: varies depending on the 

headway value from 25% of maximum load to 90% of 

maximum load (for more details see Section 4.2). 

• Type of braking: Blend of pneumatic and electrical 

braking. The pneumatic braking is only used when the 

electrical braking is not able to provide the braking force 

commanded. 

• Electrical braking: Regenerative. Trains feed braking 

power into the railway line if possible. If the maximum 

voltage is reached, the power surplus is sent to rheostats. 

• Maximum motoring power: 5MW  

• Maximum regenerating power: 4MW  

• Type of driving: Automatic Train Operation (ATO) 

guided trains.  

• Auxiliary consumption power: 200 kW. 

• Voltage threshold for the activation of the rheostatic 

braking: 1800 V 

 

Finally, the storage technology chosen consists in electrochemical double layer capacitors 

(EDLC) due to their good balance between its power and energy densities. The ESS 

management control will be according to the ESS control curve described in [13] and 

represented in Figure 4. It must be noted that the reference voltage value for defining the unitary 

units (p.u) is the no-load voltage: 1650 V. 
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Figure 4: ESS control curve 

Where: 

✓ V RHE  is the voltage threshold for the activation of the rheostatic braking: 1800 V. 

✓ V REF is the reference voltage level, which coincides with the no-load voltage level:                   

1 p.u. 

✓ V1 is the voltage level at which the battery starts the discharging phase: 0.99 p.u. 

✓ V 1 MIN is the voltage level at which the ESS reach its maximum discharging current            

(I MIN): 0.95 p.u.  

✓ V2 is the voltage level at which the battery starts the charging phase: 1.01 p.u. 

✓ V 2 MAX is the voltage level at which the ESS reach the maximum charging current                

(I MAX): 1.05 p.u. 

✓ V MIN is the lower operating level of voltage: 0.66 p.u. 

As can be seen, according to the values of the control curve parameters, both charging and 

discharging phases are activated as soon as possible, since their activation values, respectively 

determined by V1 and V2, are very close to the reference voltage. Therefore, and compared to 

other control curves that prioritize the voltage stabilization or the peak power shaving (where 

the value of  V1 is higher in order to preserve the stored energy for situations of voltage drops or 

power peaks), this control curve is designed to save the highest possible amount of energy. 

4.2. Operation characteristics 

In order to represent the different types of operation during the day in the case study line (peak 

hours, off peak hours, etc.), four different headway values have been chosen for the common 

section: 3, 5, 7 and 15 minutes. The headway value is the time interval between two consecutive 

trains. Therefore, the lower the headway, the higher the number of trains, the energy 

consumption and the regenerated energy.  

Voltage (V)

Current (A)

VRHE

V2V1VMIN VRHE

ENERGY STORAGE

ENERGY SUPPLY

V2 MAXV1MIN
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Each traffic scenario represents the system operation during a long enough period. According to 

[15], the simulation length for each traffic scenario must be approximately the time required by 

a train to go from one terminal station to the other, in order to represent a typical operation 

cycle. For the case study line, as trains can give four different types of service, the simulation 

length has been defined as the time required by the longest service to go from one terminal 

station to the other, varying from 3700 secs to 6400 secs depending on the headway value. The 

simulation sample time is 1 second. 

Simulations with large perturbations only take place at 3.5 min headway, while simulations with 

small perturbations take place at all the headway values. The distribution of the annual 

operation hours with each headway and perturbation type is depicted in Table 3. 

Table 3: Main characteristics of the annual operation in the case study line 

 

3.5 min with 

large 

perturbations 

3.5 min with 

small 

perturbations 

5 min with 

small 

perturbations 

7 min with 

small 

perturbations 

15 min with 

small 

perturbations 

Hours of 

operation 

in a year 

942.5 942.5 1885 2782 728 

Percentage 

of total 

operation 

12.95% 12.95% 25.9% 38.2% 10% 

 

The train load varies depending on the headway value: 

• At peak hours, represented by 3.5 and 5 min headways, the number of passengers is 

very high and train load is 90% of the maximum load. 

• At off-peak hours, represented by 7 min headway, the number of passengers is lower 

and train load is 50% of the maximum load. 

• At sparse traffic conditions, represented by 15 min headway, the train is almost empty, 

thus its load is 25% of the maximum load. 

As explained in Section 2.1, this paper uses a very complete traffic model to properly represent 

real operation. As recommended in [27], in order to take into account the traffic variability 

associated with the traffic variables and features previously explained, a great amount of traffic 

scenarios with large and small perturbations has been generated. The variability among 

scenarios is associated with the different values that the main traffic variables can take (e.g: the 

dwell time), which directly affect the way the traffic regulation system (in the case of small 
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perturbations) or the signalling system (in the case of large perturbations) manage the traffic 

operation. 

Additionally, when designing the commercial timetables (the original timetables for each 

headway from which the different traffic scenarios are generated by introducing variability in 

the traffic variables), different values of time-shift are used for operation with small 

perturbations (as stated in [27], this variable is not relevant for traffic scenarios with large 

perturbations). As there are four different types of service (see Section 4.1), the duration of a 

whole interval of operation is four times the headway value in the common section and, 

therefore, in order to properly take into account the variability associated with the time shift, 

200 values equally separated and within the interval [−ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ∙ 2, −ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ∙ 2 ) have 

been considered (in addition to the null-time shift, which is the most common in the literature). 

5. Experimental design  

5.1. Traffic scenarios reduction 

Considering so much traffic variability (see Section 4.2) representing real operation results in a 

huge number of traffic scenarios. Trying to optimize the infrastructure with so many different 

traffic scenarios is very difficult and time consuming (as explained in Section 2.2, each 

infrastructure configuration tested by the optimization algorithm must be simulated in all the 

traffic scenarios generated by the operation module), so it is necessary to select the most 

representative traffic scenarios. The aim of selecting representative traffic scenarios is to obtain 

a reduced set of traffic scenarios which contains most of the information of the whole set of 

traffic scenarios. The selection of the representative traffic scenarios is based on [46], where a 

characterization of the traffic scenarios is performed based on the Rheostat Loss Projection (RP) 

function, which projects rheostat losses to a set of locations in the line. In the case of this paper, 

the set of locations is the set of 𝑁 potential locations for installing the ESS. In addition, the RP 

function, which tries to compute the potential reductions in rheostat losses that can be achieved 

by increasing the receptivity (which in practice will be achieved with infrastructure 

improvements), has been replaced by the so-called Single infinite Reversible Substation Test 

(SIRS-Test). The SIRS-Test computes the energy savings (directly correlated with the rheostat 

losses) obtained from installing “infinite” (no limit in power) Reversible Substations in the set 

of locations selected (one at a time). This test establishes the maximum amount of rheostat loss 

reductions that can be potentially achieved. The set of representative scenarios must have an 

error in the energy savings for all the locations tested in the SIRS-Test less than 5% with respect 

to the whole set of traffic scenarios. With these requirements, the number of scenarios has been 

reduced to 99%. To reduce the computational burden, the representative scenarios have been 

compressed according to [47]. 
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Despite the selection and compression of the traffic scenarios, the computational burden is still 

quite considerable. Parallel computing has been used to speed up the optimization process: the 

ESSs configurations to be simulated in each iteration of any optimization algorithm have been 

distributed among a number of workers equivalent to the number of logical processors of the 

server. Two types of servers have been used:   

• Server type 1:  

o CPU: AMD Ryzen Threadripper 2990WX , 32 Cores - 3000 MHz (64 logical 

processors). 

o RAM: 64 GB. 

o Disk: NVMe 512 GB. 

• Server type 2:  

o CPU: Intel(R) Xeon(R) Silver 4116, 24 Cores-2100 MHz (48 logical 

processors). 

o RAM: 128 GB. 

o Disk: DELL PERC H330 1.65 TB. 

The average simulation time required by these servers to perform the simulations associated 

with a single iteration of any optimization algorithm is around 40 minutes (having variations in 

time that mainly depend on the number of logical processors of the server). 

5.2. Optimization cases and algorithms’ parameters 

Some general parameters (applicable to all the optimization algorithms) must be set for the 

variables of decision: 

• Location: as can be seen in Table 2, there are 11 Traction Substations. The locations 

where the ESSs can be installed correspond to the locations of the Traction Substations. 

This choice is mainly due to operational reasons, since the installation and maintenance 

of the ESSs in these locations is much easier and simpler than in any other point of the 

line. Additionally, although installing the ESSs between Traction Substations can be 

better from the voltage regulation point of view, the case-study line does not have 

voltage drop problems. In consequence, every location of a Traction Substation is 

considered as a candidate to install the ESS: 𝑁 = 11. 

• ESSs power: this variable of decision can take any value among the set 

[0: 𝑠𝑡𝑒𝑝𝑝𝑜𝑤: 𝑚𝑎𝑥𝑝𝑜𝑤], where: 

o 𝑠𝑡𝑒𝑝𝑝𝑜𝑤 = 500 𝑘𝑊 

o 𝑚𝑎𝑥𝑝𝑜𝑤 = 3000 𝑘𝑊 

Although the search space of the optimization problem could be reduced by dividing the 

traction system in different sectors (which, for example, would reduce the number of potential 
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locations to install the ESSs in each sector), this approach is not possible because all the 

elements of the system are electrically connected. 

Two optimization cases have been used for each algorithm in order to check their robustness 

and ten instances have been run for each algorithm in each case. 

The two cases of the GA differ in the crossover mechanism used: the “one-point crossover” has 

been used for Case 1 and the “uniform crossover” has been used for Case 2. The parameters of 

the GA have been selected experimentally and are depicted in Table 4. 

Table 4: GA parameters 

 
Case 1 

(GA1) 

Case 2 

(GA2) 

Population size (number of chromosomes) 128 

Probability for a chromosome to mutate one gene, 𝑚𝑢𝑡1 20% 

Probability for a chromosome to mutate two genes, 𝑚𝑢𝑡2 10% 

Probability to swap each gene among parents in the uniform crossover 

mechanism, 𝑝𝑠𝑤𝑎𝑝. 
- 50% 

Maximum number of iterations, 𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 100 

The two cases of the PSO differ in the way the velocity is updated. In Case 1, the inertia weight, 

𝑤, is a constant parameter, while in Case 2 it changes its value in every iteration according to 

the formula of the “Linear Decreasing Inertia Weight” proposed by [48] and defined in (12). 

𝑤(𝑖𝑡𝑒𝑟) = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛
𝑖𝑡𝑒𝑟𝑚𝑎𝑥

× 𝑖𝑡𝑒𝑟 

 

(12) 

Where: 

✓ 𝑤𝑚𝑎𝑥 is the maximum inertia weight. 

✓ 𝑤𝑚𝑖𝑛 is the minimum inertia weight. 

✓  𝑖𝑡𝑒𝑟 is the current iteration. 

The parameters of the PSO have been selected experimentally and are depicted in Table 5. 

Table 5: PSO parameters 

 
Case 1 

(PSO1) 

Case 2 

(PSO2) 

Population size (number of particles) 128 

Inertia weight, 𝑤 0.5 
𝑤𝑚𝑎𝑥=0.9 

𝑤𝑚𝑖𝑛=0.4 

Personal attractor, 𝑐1 0.2 

Global attractor, 𝑐2 0.3 

Maximum number of iterations, 𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 100 

The two cases of the FA differ in the proportion between fireworks and regular sparks. 

Maintaining the maximum number of sparks in both cases (the population of sparks in the FA is 

not constant but a maximum number of sparks must be set), the number of fireworks in Case 2 

doubles the number of fireworks in Case 1 and, consequently, the average number of sparks per 

firework in Case 2 is half the average number of sparks per firework in Case 1. 
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The parameters of the FA have been selected experimentally and are depicted in Table 6: 

Table 6: FA parameters 

 
Case 1 

(FA1) 

Case 2 

(FA2) 

Max. number of sparks 128 

Number of fireworks, 𝑛 13 26 

xth percentile to determine the radius of explosion 40 

Percentage of Gaussian sparks (against total number of sparks) 7% 

Maximum number of iterations,  𝑛𝑢𝑚 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 100 

 

5.3. Fitness function parameters 

This section contains the values of the parameters used to calculate the fitness function as well 

as the reason why they have been chosen.  

• 𝑒𝑐𝑜𝑠𝑡: 0.0642 €/kWh. This is a realistic value obtained from the addition of the average 

energy price in Spanish market in the year 2018 and the energy tolls established by the 

Spanish Government for that year. For more details about the procedure to compute the 

energy cost, see [13]. 

• 𝐶0(𝑠𝑝𝑖): this value is computed by adding the total power and capacity installed and 

multiplying it by their unitary costs. The unitary costs for the EDLCs (the storage 

technology chosen for the ESSs) are depicted in Table 7 and have been obtained from 

the range of values proposed by [5]. 

Table 7: Unitary costs for power and capacity 

Capital cost for energy [€/kWh] Capital cost for power  [€/kW] 

270 90 

 

• 𝑤𝑎𝑐𝑐: 2.5%. This is a reasonable interest rate. 

• 𝑇: 15 years. This is a very reasonable estimation for the ESSs life according to the 

International Renewable Energy Agency (IRENA) [49]. 

• 𝑏𝑢𝑑𝑔𝑒𝑡: for the case study, a budget of 280000 € has been selected, as it is flexible 

enough to allow a high number of different configurations to be installed, and restrictive 

enough so as not to allow very expensive configurations, which are not likely to be 

accepted by the railway operators. For real implementation, railway operators must set 

this value. 
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6. Results 

6.1. Comparison of algorithms 

Ten instances have been run for each optimization algorithm and case. Figure 5 shows the 

evolution of the average and the median of the fitness function for each algorithm and case in 

relation to the number of iterations. 

 

Figure 5: Evolution of the average and median of the fitness functions 

The average of the fitness function is very sensitive to “outlier” instances, where the optimum is 

not reached or a high number of iterations is required to reach it. This high sensitivity results in 

two effects: 

• If just one instance of a case does not reach the optimum fitness (this instance can be 

considered an “outlier”), the average of all the instances will not reach it. 

• Even in the case that all instances reach the optimum, the average will only do it in the 

iteration where the slowest instance, in terms of speed of convergence, reach the 
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optimum (this instance can be considered an “outlier” if it is much slower than the rest 

of the instances of the case). 

The median filters these “outliers” to a certain extent and represents what can be considered the 

“normal” behavior of the algorithm for a given case. Therefore, the presentation of both metrics 

helps to have a better insight on the algorithms’ performance. 

As can be seen, the best fitness value achieved by each of the three algorithms is not improved 

but matched by the other algorithms. Although it is not possible to assure that the algorithms 

have reached the global optimum- this is only possible with mathematical optimization- it is 

very likely that they have reached it, since three different algorithms (run each of them ten 

instances per optimization case and having two optimization cases per algorithm) have reached 

the same best solution. Besides, the optimization algorithms selected present good exploration 

features that prevent them from getting “trapped” in local optima. 

Regarding the effectiveness of the algorithms, the GA and FA always reach the optimum 

solution, while the PSO does not reach it in all its instances. This is clear when analyzing the 

evolution of the average fitness: while this value is stabilized to, approximately, 348450 €, in 

the two cases of the GA and the FA (GA1, GA2, FA1, FA2), the average obtained in the two 

cases of the PSO (PSO1, PSO2) is bellow it. Nevertheless, in a “normal” situation, the PSO gets 

to the optimum solution, as can be seen when analyzing the median: all the cases of all the 

algorithms stabilize their value to, approximately, 348450 €.  

Regarding the speed of convergence of the algorithms, the GA is faster than the FA, which, in 

turn, is faster than the PSO. This is clearly seen in the vertical evolution of the averages and 

medians (especially in the medians, as they filter the “outlier” instances): the two cases of the 

GA are the first to stabilize, then the two cases of the FA and, finally, the two cases of the PSO. 

Additionally, the GA and the FA are very robust, as they present a very similar performance in 

both optimization cases. On the contrary, the PSO is less robust, as its performance is more 

affected by the optimization cases (it is faster in PSO1 than in PSO2). 

In conclusion, the GA presents the best performance, followed by the FA and the PSO.  

• The main difference in performance between GA and FA is on the speed of 

convergence, not in the effectiveness, as both algorithms reach the best solution in all 

the instances run. The GA requires less iterations to reach the optimum than the FA, 

although the FA is faster in the initial iterations. 

• The PSO is worse than the GA and FA in effectiveness as well as in speed of 

convergence. 
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6.2. Analysis of the solution 

Figure 6 provides the properties (locations and sizes) of the solutions achieved by the 

algorithms as well as the fitness of the solutions and the number of times (out of the total 

number of instances) that each algorithm in each optimization case has reached it. 

 

Figure 6: Solutions achieved by the optimization algorithms 

When analyzing the solutions, the excellent performance of the optimization algorithms, 

especially the GA and the FA, has been demonstrated. In pre-optimization tests performed to 

gain a first understanding of the search space corresponding to the case study line, it was found 

that the receptivity of the line was reasonably high. Indeed, it was also found that the receptivity 

is almost absolute (which means that practically the whole amount of regenerated energy is 

recovered) with installations with a total power greater or equal to 3 MW, The solutions 

provided by the optimization algorithms are completely in line with the results of these pre-

optimization tests, as the total power installed is 2 MW. This means that although there is room 

to increase the energy savings with a bigger installation (at least until a total power of 3 MW), 

the marginal benefit from increasing the energy savings does not economically compensate the 

extra-investment required for it.  
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SOLUTION C.  FITNESS: 347890 € 

GA1: 10/10 PSO1: 6/10 FA1: 10/10

GA2: 10/10 PSO2: 7/10 FA2: 10/10

GA1: 0/10 PSO1: 2/10 FA1: 0/10

GA2: 0/10 PSO2: 2/10 FA2: 0/10

GA1: 0/10 PSO1: 2/10 FA1: 0/10

GA2: 0/10 PSO2: 1/10 FA2: 0/10
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Once having analyzed the total amount of power installed, it is also very important to study the 

distribution of this power among the potential locations where the ESSs can be installed. In the 

three solutions provided by the algorithms (Solutions A, B and C), the 2 MW of total installed 

power is very carefully distributed:  

• Solution A has been achieved in all the instances run with the GA and the FA and in 

most of the instances run by the PSO. It proposes four locations (each of them with an 

installation of 500 kW) very carefully chosen: the two central locations of the common 

section (which all trains must pass through) and the central location of each of the two 

branches.  

• Solution B and Solution C are only provided by the PSO. They present a slightly worse 

fitness than Solution A and small variations from it. As the total power installed and the 

number of locations over which it is distributed are the same as in Solution A, the only 

difference is in the locations selected. Concretely, only one location in each of the 

solutions differ from the locations proposed by Solution A: 

o Location 11 instead of 10 (the next location on the same branch) in Solution B. 

o Location 4 instead of 10 (the common section increases its number of 

installations in one ESS to the detriment of branch B-F (the smallest one), 

which runs out of installations) in Solution C. 

Finally, it must be noted that from an initial investment of 185400 € (Equation (13) details the 

calculation of the investment cost for the solutions) the NPV is within 347890 and 348450 €. 

This implies that the benefit from the installation of the ESSs almost doubles the cost of the 

initial investment. In particular, the best solution gives a benefit of 188% the initial investment. 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙. 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐴/𝐵/𝐶 =  4 ∙ (500 𝑘𝑊 ∙ 90
€

𝑘𝑊
+ 5 𝑘𝑊ℎ ∙ 270

€

𝑘𝑊ℎ
) = 185400€ (13) 

7. Conclusions 

Railway operators of DC-electrified lines have a great interest in improving the electrical 

infrastructure of these systems in order to increase the energy saving. The installation associated 

with these improvements involve big investments that need to be adequately assessed. However, 

the methodology to determine the optimal design of these installations is not sufficiently 

developed in the scientific literature. This paper proposes a methodology to provide an accurate 

assessment of the possible infrastructure improvements to undertake in a railway line and 

determine the optimal installation. It combines the use of a realistic railway simulator and the 

application of nature-inspired optimization algorithms. 

The railway simulator is used to obtain accurate enough energy figures to characterize the 

energy saving potential of the railway line. It is divided in two main modules:  
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• The operation module, which represents the real operation of the railway line and 

models in detail situations of traffic with small and large perturbations. 

• The electrical network module, which obtains the electrical information from the traffic 

scenarios generated by the operation module. 

The optimization algorithms perform an intelligent search of the characteristics of the 

installation, (in terms of number, location and size of the ESSs) that yields the best fitness. The 

fitness has been defined as the Net Present Value (NPV), as it looks for a balance between 

energy savings and economic profitability of the investment associated with the infrastructure 

improvement required to obtain those energy savings. 

Three different optimization algorithms have been proposed in order to validate and compare 

the algorithms’ performance as well as the results provided by each of them. The optimization 

algorithms proposed are the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) 

and the Fireworks Algorithm (FA).  

The performance of the algorithms is excellent: they combine the reduction of energy 

consumption with the economic profitability of the investment selected. In particular, results 

have shown that the GA and the FA have the best performance, the speed of convergence being 

a bit faster in the case of the GA.  
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